skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vito, Fabio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dust-obscured galaxies (DOGs) with extremely red optical-to-infrared colors are often associated with intense starburst and active galactic nucleus (AGN) activity. Studying DOGs can provide insights into the processes that drive the growth of galaxies and their central supermassive black holes. However, the general DOG population is heterogeneous, spanning a wide range of evolutionary stages, and has X-ray obscuring column densities (NH) covering low to high levels. In this work, we focus on seven high Eddington ratio DOGs ( log λ Edd 0.5 ) to examine their X-ray obscuration properties using new and archival X-ray observations. We confirm that these systems are generally heavily obscured, with six out of seven havingNH ≳ 1023cm−2and three out of seven havingNH ≳ 1024cm−2. Based on the observed similarity with the rare Hot DOG population, we argue that both high-λEddDOGs and Hot DOGs likely trace the postmerger phase, during which AGNs are enshrouded by large columns of dust-rich material. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Abstract Dust-obscured galaxies (DOGs) containing central supermassive black holes (SMBHs) that are rapidly accreting (i.e., having high Eddington ratios,λEdd) may represent a key phase closest to the peak of both the black hole and galaxy growth in the coevolution framework for SMBHs and galaxies. In this work, we present a 68 ks XMM-Newton observation of the high-λEddDOG J1324+4501 atz∼ 0.8, which was initially observed by Chandra. We analyze the XMM-Newton spectra jointly with archival Chandra spectra. In performing a detailed X-ray spectral analysis, we find that the source is intrinsically X-ray luminous with log ( L X /erg s 1 ) = 44.71 0.12 + 0.08 and heavily obscured with log ( N H / cm 2 ) = 23.43 0.13 + 0.09 . We further utilize UV-to-IR archival photometry to measure and fit the source’s spectral energy distribution to estimate its host-galaxy properties. We present a supplementary comparison sample of 21 X-ray luminous DOGs from the XMM-SERVS survey with sufficient (>200) 0.5–10 keV counts to perform a similarly detailed X-ray spectral analysis. Of the X-ray luminous DOGs in our sample, we find that J1324+4501 is the most remarkable, possessing one of the highest X-ray luminosities, column densities, and star formation rates. We demonstrate that J1324+4501 is in an extreme evolutionary stage where SMBH accretion and galaxy growth are at their peaks. 
    more » « less
  3. ABSTRACT We present optical and near-infrared (NIR) spectroscopic observations for a sample of 45 quasars at $$6.50 < z \le 7.64$$ with absolute magnitudes at 1450 Å in the range $$-28.82 \le M_{1450} \le -24.13$$ and their composite spectrum. The median redshift and $$M_{1450}$$ of the quasars in the sample are $$z_{\rm {median}}=6.71$$ and $$M_{1450,\rm {median}} \simeq -26.1$$, respectively. The NIR spectra are taken with Echelle spectrographs, complemented with additional data from optical long slit instruments, and then reduced consistently using the open-source Python-based spectroscopic data reduction pipeline PypeIt. The median of the mean signal-to-noise ratios per 110 km s$$^{-1}$$ pixel in the J, H, and K band [median $$\langle \rm {SNR}_{\lambda } \rangle$$] is median $$\langle \rm {SNR}_{J} \rangle =9.7$$, median $$\langle \rm {SNR}_{H} \rangle =10.3$$, and median $$\langle \rm {SNR}_{K} \rangle =11.7$$; demonstrating the good data quality. This work presents the largest medium-/moderate-resolution sample of quasars at $z>6.5$ from ground-based instruments. Despite the diversity in instrumental set-ups and spectral quality, the data set is uniformly processed and well-characterized, making it ideally suited for several scientific goals, including the study of the quasar proximity zones and damping wings, the Ly $$\alpha$$ forest, the intergalactic medium’s metal content, as well as other properties such as the distribution of SMBH masses and Eddington ratios. Our composite spectrum is compared to others at both high and low z from the literature, showing differences in the strengths of many emission lines, probably due to differences in luminosity among the samples, but a consistent continuum slope, which proves that the same spectral features are preserved in quasars at different redshift ranges. 
    more » « less
  4. Abstract Dust-obscured galaxies (DOGs) are enshrouded by dust and many are believed to host accreting supermassive black holes (SMBHs), which makes them unique objects for probing the coevolution of galaxies and SMBHs. We select and characterize DOGs in the 13 deg2XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS), leveraging the superb multiwavelength data—from X-rays to radio. We select 3738 DOGs atz≈ 1.6–2.1 in XMM-SERVS, while maintaining good data quality without introducing significant bias. This represents the largest DOG sample with thorough multiwavelength source characterization. Spectral energy distribution modeling shows DOGs are a heterogeneous population consisting of both normal galaxies and active galactic nuclei (AGNs). Our DOGs are massive ( log M / M 10.7 - 11.3 ), 174 are detected in X-rays, and they are generally radio-quiet systems. X-ray detected DOGs are luminous and are moderately to heavily obscured in X-rays. Stacking analyses for the X-ray undetected DOGs show highly significant average detections. Critically, we compare DOGs with matched galaxy populations. DOGs have similar AGN fractions compared with typical galaxy populations. X-ray detected DOGs have higherMand higher X-ray obscuration, but they are not more star-forming than typical X-ray AGNs. Our results potentially challenge the relevance of the merger-driven galaxy-SMBH coevolution framework for X-ray detected DOGs. 
    more » « less
  5. Abstract Recent studies have revealed a strong relation between the sample-averaged black hole (BH) accretion rate (BHAR) and star formation rate (SFR) among bulge-dominated galaxies—i.e., “lockstep” BH–bulge growth—in the distant universe. This relation might be closely connected to the BH–bulge mass correlation observed in the local universe. To further understand BH–bulge coevolution, we present Atacama Large Millimeter/submillimeter Array (ALMA) CO(2–1) or CO(3–2) observations of seven star-forming bulge-dominated galaxies at z = 0.5–2.5. Using the ALMA data, we detect significant (>3 σ ) CO emission from four objects. For our sample of seven galaxies, we measure (or constrain with upper limits) their CO line fluxes and estimate their molecular gas masses ( M gas ). We also estimate their stellar masses ( M star ) and SFRs, by modeling their spectral energy distributions. Using these physical properties, we derive the gas depletion timescales ( τ dep ≡ M gas /SFR) and compare them with the bulge/BH growth timescales ( τ grow ≡ M star /SFR ∼ M BH /BHAR). Our sample generally has τ dep shorter than τ grow by a median factor of ≳4, indicating that the cold gas will be depleted before significant bulge/BH growth takes place. This result suggests that BH–bulge lockstep growth is mainly responsible for maintaining the mass relation, not creating it. We note that our sample is small and limited to z < 2.5; JWST and ALMA will be able to probe to higher redshifts in the near future. 
    more » « less
  6. Abstract W-CDF-S, ELAIS-S1, and XMM-LSS will be three Deep-Drilling Fields (DDFs) of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST), but their extensive multiwavelength data have not been fully utilized as done in the COSMOS field, another LSST DDF. To prepare for future science, we fit source spectral energy distributions (SEDs) from X-ray to far-infrared in these three fields mainly to derive galaxy stellar masses and star formation rates. We use CIGALE v2022.0, a code that has been regularly developed and evaluated, for the SED fitting. Our catalog includes 0.8 million sources covering 4.9 deg 2 in W-CDF-S, 0.8 million sources covering 3.4 deg 2 in ELAIS-S1, and 1.2 million sources covering 4.9 deg 2 in XMM-LSS. Besides fitting normal galaxies, we also select candidates that may host active galactic nuclei (AGNs) or are experiencing recent star formation variations and use models specifically designed for these sources to fit their SEDs; this increases the utility of our catalog for various projects in the future. We calibrate our measurements by comparison with those in well-studied smaller regions and briefly discuss the implications of our results. We also perform detailed tests of the completeness and purity of SED-selected AGNs. Our data can be retrieved from a public website. 
    more » « less
  7. Abstract We perform X-ray spectral analyses to derive the characteristics (e.g., column density, X-ray luminosity) of ≈10,200 active galactic nuclei (AGNs) in the XMM-Spitzer Extragalactic Representative Volume Survey, which was designed to investigate the growth of supermassive black holes across a wide dynamic range of cosmic environments. Using physical torus models (e.g., Borus02) and a Bayesian approach, we uncover 22 representative Compton-thick (CT;NH> 1.5 × 1024cm−2) AGN candidates with good signal-to-noise ratios as well as a large sample of 136 heavily obscured AGNs. We also find an increasing CT fraction (fCT) from low (z< 0.75) to high (z> 0.75) redshift. Our CT candidates tend to show hard X-ray spectral shapes and dust extinction in their spectral energy distribution fits, which may shed light on the connection between AGN obscuration and host-galaxy evolution. 
    more » « less
  8. Abstract Active dwarf galaxies are important because they contribute to the evolution of dwarf galaxies and can reveal their hosted massive black holes. However, the sample size of such sources beyond the local universe is still highly limited. In this work, we search for active dwarf galaxies in the recently completed XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS). XMM-SERVS is currently the largest medium-depth X-ray survey covering 13 deg2in three extragalactic fields, which all have well-characterized multiwavelength information. After considering several factors that may lead to misidentifications, we identify 73 active dwarf galaxies atz< 1, which constitutes the currently largest X-ray-selected sample beyond the local universe. Our sources are generally less obscured than predictions based on the massive-AGN (active galactic nucleus) X-ray luminosity function and have a low radio-excess fraction. We find that our sources reside in environments similar to those of inactive dwarf galaxies. We further quantify the accretion distribution of the dwarf-galaxy population after considering various selection effects and find that it decreases with X-ray luminosity, but redshift evolution cannot be statistically confirmed. Depending on how we define an AGN, the active fraction may or may not show a strong dependence on stellar mass. Their Eddington ratios and X-ray bolometric corrections significantly deviate from the expected relation, which is likely caused by several large underlying systematic biases when estimating the relevant parameters for dwarf galaxies. Throughout this work, we also highlight problems in reliably measuring photometric redshifts and overcoming strong selection effects for distant active dwarf galaxies. 
    more » « less